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This material is drawn from the following website for the University of Texas at Dallas, which 
provides Fall 2003 course notes for "Computer Sciences 6352: Performance of Computer Systems 
and Networks" (instructor: Assistant Professor Jason Jue):  
http://www.utdallas.edu/~jjue/cs6352/markov. 
 
 
Discrete-Time Markov Chains 
 
A Markov chain is a discrete state space process in which the next state depends only on the present 
state.  

For a discrete time system, if  is the state of the system at time , then  is a 
Markov chain if:  
 

 
 
i.e., the state (j) of the system at time depends only on the state (i) of the system at time , 
and does not depend on any other state before time . 
 
 
State Probabilities 

The state probability, denoted as , is the probability that the process is in state  at time .  

 

 
 

The state probability vector is denoted as , and consists of all of the state probabilities for a 
given time .  

 
 
 

Note that the sum over the elements in  is equal to 1.  
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Transition Probabilities  
 
The one-step transition probability is the probability of transitioning from one state to another in a 
single step.  The Markov chain is said to be time homogeneous if the transition probabilities from one 
state to another are independent of time index .  

 
 
The transition probability matrix, , is the matrix consisting of the one-step transition probabilities, 

.  
The -step transition probability is the probability of transitioning from state  to state  in  
steps.  

 
 

The -step transition matrix whose elements are the -step transition probabilities  is 

denoted as .  
 
The -step transition probabilities can be found from the single-step transition probabilities as 
follows.  
 
To transition from to  in  steps, the process can first transition from to in  steps, 

and then transition from to  in  steps, where .  

 

 
 
In matrix form, this becomes:  

 
 
Setting  yields:  

 
 
From this equation we can see that:  

 
 
Substituting this back into the previous equation yields:  
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Continuing these substitutions, eventually we have:  

 
 
Therefore, the -step transition probability matrix can be found by multiplying the single-step 
probability matrix by itself  times.  
 
The state vector at time  can also be found in terms of the transition probability matrix and the 

intial state vector .  We first observe that:  

 
 
In vector and matrix form, this becomes:  

 
 
We also find that, through substitution:  

 
 
or,  

 
 
Continuing the substitution yields:  

 
 

where  is the vector containing the initial probabilities of being in each state at time 0. 
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Long-Run Behavior of Markov Chains  
 
As the time index  approaches infinity, a Markov chain may settle down and exhibit steady-state 
behavior.  If the following limit exists:  

 
 

for all values of , then the  are the limiting or steady-state probabilities.  
 
Looking at the state probability as approaches infinity, we see that:  

  
(1)

 
  

 

 
  

 

 
  

 

 
  

 

 
When the limiting probabilities exist, they can be found using the following equations:  

 
 
and  

 
 
where  

 
 




